Heat deposition and activation of target and capture system

A. Ushakov, S. Riemann (DESY)

2nd ILC Positron Source R&D Meeting 1 February 2007 IHEP (Beijing, China)

- Source model
- Positron production in target
- Positron capture and lost particles
- Energy deposition
- Activation

Helical Undulator. Energy Distribution of Photons.

Undulator

e ⁻ drive beam energy, GeV	150
K-value	1
Undulator period, cm	1
Magnetic field, T	1.07
1 st harmonic cutoff energy, MeV	10.7
Mean photon energy, MeV	12.53
Transverse rms beam size, mm	0.7

Note: No photon collimator!

Photon energy spectrum

FLUKA Source Model

Target

	<u> </u>
Material	Ti6Al4V
Thickness	0.4 X ₀ (1.48 cm)
Radius, cm	39.5
Offset, cm	38.0

AMD

Material	Cu
Thickness, cm	20
Inlet aperture, cm	0.4
Outlet aperture, cm	4.6

"RF Structures"

Material	Cu
Length, cm	180
Inner diameter, cm	4.6
Outer diameter, cm	8.6

Solenoid

Material	Cu
Length, cm	200
Inner diameter, cm	60
Outer diameter, cm	80

Optical Matching Device

Ideal Flux Concentrator

$$B(z)=\frac{B_i}{1+g\cdot z},$$

Initial field B_i 6 TFinal field B_f 0.5 TTaper parameter g30 m⁻¹

Solenoid field 0.5 T

David J. Mayhall, *A Preliminary Low-Frequency Electromagnetic Analysis of a Flux Concentrator*, June 13, 2006, UCRL-TR-221994 RF Accelerator System (TESLA Design, 2000):

- two 11-cell high gradient structures of 1.37 m length and 14.5 MeV/m average accelerating gradient
- two 17-cell low gradient structures of 4.36 m length and 8.5 MeV/m average accelerating gradient

Positron Production

FLUKA 2006 FLUKA 2005 Positron Yield, e^+/γ 0.0276 0.0269

2nd ILC Positron Source R&D Meeting

How acceleration in RF cavities can be added into FLUKA?

FLUKA does not support particle tracking in electric fields.

- For reliable estimations, e^+ and e^- tracking in regions with electric field (RF cavities) should be avoided.
- Therefore, a thin fictive "absorber" of e^+ and e^- has been added on inner surface of RF structures.
- Task has been splitted into three parts:
 - For this geometry, simulation of energy deposition and activation for all particles except e⁺ and e⁻ lost in the acceleration region.
 - For e⁺ and e⁻ lost in the RF structures, the energy and momentum distributions were calculated by ASTRA.
 - ASTRA output is input for FLUKA to determine energy deposition and activation due to lost e⁺ and e⁻.

Energy Deposition with Absorber for e⁺ and e⁻

ASTRA

Positron capture efficiency is 0.35

for the energy spread of 1% and $\epsilon_{i,x} + \epsilon_{i,y} < 0.04\pi$ m rad

Total number of e^+ and $e^$ after the target is 0.083 1/ γ

Number of lost e⁺ and e⁻ (z < 2 m) is 0.033 1/ γ

Number of lost e^+ and e^- vs z

Energy Deposition

Total Deposited Power (kW) Undulator with K = 1, $\lambda_u = 1$ cm

Power of photon beam	88.4 kW	137 kW
Target	6.76	10.48
AMD	5.36	8.31
RF Structures	1.81	2.84
Solenoid	0.17	0.28

Power Deposited in Target

2nd ILC Positron Source R&D Meeting

A. Ushakov (DESY)

Power Deposited in RF Structures

Deposited power without taking into account lost e^+ and e^-

1 Feb 2007, IHEP Beijing 14 / 18

Source Activation (88 kW Photon Beam)

Total activity after 5000 h of source operation

Source part	A _{5000h} [GBq]
Target	$3149\pm5.1\%$
AMD	$3737\pm4.6\%$
RF Structures	$1439\pm8.3\%$
Solenoid	$1198\pm8.3\%$

Dose rate after 5000 h of source operation and 1 week shutdown

Source part	<i>.</i> D₁ _w [mSv/h]
Target	$167\pm9.5\%$
AMD	$0.077\pm100\%$
RF Structures	$0.109\pm82\%$
Solenoid	$0.024\pm100\%$

Time Evolution of Total Activity and Dose Rate

Dose Rates of Target and Capture Section vs Decay Time

 Energy deposition and source activation has been estimated for undulator based positron source with undulator K-value of 1 and undulator period of 1 cm

Ongoing Work and Future Plans

Perform similar simulations for actual design of positron source with

- undulator with K = 0.92, $\lambda_u = 1.15$ cm
- rim target
- more realistic model of the flux concentrator
- actual RF acceleration system
- polarized photon beam (take into account photon collimator)