Status of Positron Source Simulation in Zeuthen

A. Ushakov, A. Schälicke, S. Riemann

DESY

POSIPOL 2010

KEK, Tsukuba, 2 June 2010

- Polarized Positron Source Simulations (PPS-Sim)
 - General description
 - New features
- Simulation Results for Conventional Source
 - Positron yield
 - PEDD
- Summary

PPS-Sim is Geant4-based application for e⁺ source modeling

- Electromagnetic and hadronic shower development in target
- Single particle tracking in electro-magnetic fields
- Polarization transfer in physics processes
- Spin tracking in electro-magnetic fields
- Powerful geometry package
- Visualisation of geometry model, particle trajectories and energy deposition
- Qt4-based Graphical User Interface (GUI)
- ROOT: analysis of results and input data (e.g. energy spectrum of primary beam)

Choice of Source Components

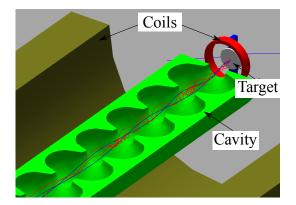
Primary Beam

- Photons from undulator
- Electrons (conventional source)
- Input file (Compton photons, channeling radiation)

Target

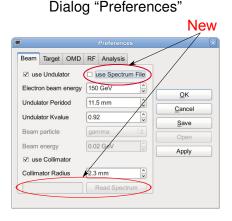
- Solid wheel (Ti- or W-alloy)
- Liquid Lead

Optical Matching Device (OMD) and Accelerating Cavity (RF)

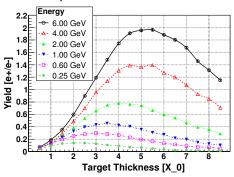

- Pulsed flux concentrator (AMD)
- Lithium lens
- Quarter-wave transformer (QWT)
- 1.3 GHz cavity embedded into solenoid
- Acceptance of Damping Ring

Aperture of **Photon Collimator**

A. Ushakov (DESY)

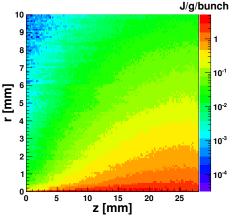

Visualization Example

Source Model with Liquid Lead Target and QWT


- Source can be configured via macro-commands (Geant4) or dialog "Preferences"
 - Choice of source components
 - Dimentions & relative positions
 - Beam, field parameters

• ..

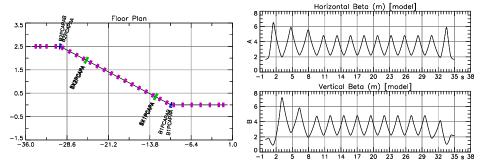
- Pb target, 3 mm BN window
- Pencil-like e⁻ beam
- AMD field: 6 T to 0.5 T
- Optimized AMD taper parameter
- E-field: 14.5 MeV/m
- DR acceptance: 0.09 m rad, 10 mm long. bunch size


"Captured" Positron Yield

Conventional Source with Lead Target and AMD

e ⁻ beam energy	6 GeV		
Beam size, σ_r	4.0 mm		
Target material	Lead		
Target density, $ ho$	11.35 g/cm ³		
Target thickness	5 X ₀		
Number of e ⁺	$3 \cdot 10^{10}$ per bunch		
Captured Yield	0.84 e ⁺ /e ⁻		
PEDD	4.54 J/g/bunch		

Energy Deposition in Target


Lead Target and AMD

e ⁻ Energy Thickness [mm]	Taper	Yield	Yield	E ^{total}	PEDD	
		[m ⁻¹]	[e ⁺ /e ⁻]	[e ⁺ /e ⁻]	[MeV/e ⁺]	[J/g/bunch*]
	[]		$\sigma_r = 0$	$\sigma_r = 4 \text{ mm}$		
250 MeV	11.2	35	0.14	0.08	582	4.1
600 MeV	16.8	34	0.29	0.16	869	1.4
2 GeV	22.4	28	0.78	0.37	1267	0.4
6 GeV	28.0	12	1.96	0.84	1698	4.5

 $*3 \cdot 10^{10} e^+$ /bunch

Simulations ILC beamline downstream 125 MeV have been started

PCAPA (Positron CAPture system A) is the beamline that separates the positrons from the electrons and photons

Summary and Outlook

- Input data for primary beam (energy and spatial distribution) can be used in PPS-Sim
- Special running mode for the PEDD analysis is provided
- Optimization of positron source can be performed.
 Some results for conventional source have been presented
- Bmad simulations have been started

Plans:

- Adding field maps into PPS-Sim
- Finding of optimal electrical field phase
- Beam tracking up to DR in PPS-Sim + Bmad